

(R)-N-Isopropyl-N-(4-hydroxybutyl)-1-[(S)-1',2-bis(diphenylphosphino)ferrocenyl]ethyl amine

Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda E.e. = 91% $[\alpha]_{D}^{25} = +11.0$ (c 1.2, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: R OH Et C₅H₁₁ C19H34O3 5-Ethyl-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda E.e. = 85% $[\alpha]_{D}^{25} = +5.2$ (c 1.0, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: R OH n-Pr .C₅H₁₁ C20H36O3 5-Propyl-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda

Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda E.e. = 91% $[\alpha]_{D}^{25} = +1.9$ (c 1.0, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: R OH t-Bu C₅H₁₁ C21H38O3 5-(tert-Butyl)-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda E.e. = 89% $[\alpha]_{D}^{25} = +10.1$ (c 1.0, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: R OH C5H11 C20H34O3 5-Allyl-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate Tetrahedron: Asymmetry 12 (2001) 3223 J. S. Yadav* and S. Nanda E.e. = 75% $[\alpha]_{D}^{25} = -19.2$ (c 1.0, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: ROH

Ph

C₅H₁₁

C23H34O3

5-Phenyl-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate

 $\label{eq:c17} C_{17}H_{30}O_4$ 5-Hydroxy-(3Z,5R,6Z)-3,6-dodecadienyl-5-hydroxypentaonate

Tetrahedron: Asymmetry 12 (2001) 3223

E.e. = 96% $[\alpha]_D^{25}$ = +13.0 (*c* 1.0, CHCl₃) Source of chirality: enzyme-catalyzed transesterification Absolute configuration: *R*

Akihito Fujii, Yoshito Fujima, Hiroshi Harada, Masaya Ikunaka,* Toru Inoue, Shiro Kato and Keisuke Matsuyama $\begin{pmatrix} \downarrow & \downarrow & \downarrow \\ PhH_2CO & H \end{pmatrix}^2 \xrightarrow{NH_3^+}_{Me} \xrightarrow{Q_2} (\downarrow & \downarrow & \downarrow \\ Me & \downarrow & \downarrow \\ C_{28}H_{29}N_2O_5
\end{cases}$ Bis [(R)-2-(7-benzyloxy-3-indolyl)-1-methylethylammonium] O,O'-di-p-toluoyl L-(2R,3R)-tartrate

Akihito Fujii, Yoshito Fujima, Hiroshi Harada, Masaya Ikunaka,* Toru Inoue, Shiro Kato and Keisuke Matsuyama Tetrahedron: Asymmetry 12 (2001) 3235

 $[\alpha]_{D}^{20} = -17.8$ (c 0.50, MeOH) Source of chirality: resolution Absolute configuration: R

E.e. = 99.7%

C₁₈H₂₀N₂O (*R*)-3-(2-Aminopropyl)-7-benzyloxyindole

PhH₂

MeO.

NH₂

_ Me

 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl,
 Tetrahedron: Asymmetry 12 (2001) 3241

 Marco Visintin and Ennio Valentin*
 E.e. = 76% (by chiral HRGC)

$$\begin{split} & [\alpha]_{D}^{20} = -7.3 ~(c~0.7,~MeOH) \\ & \Delta \varepsilon_{209} ~-0.88 ~(MeOH) \\ & \text{Source of chirality: enzymatic resolution} \\ & \text{Absolute configuration: } S \end{split}$$

H C₆H₉NO₃ Methyl (S)-(-)-5-oxo-3-pyrrolidinecarboxylate

Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 95% (by chiral HRGC) $[\alpha]_{D}^{25} = +8.7$ (c 1.1, MeOH) MeO₂C $\Delta \epsilon_{214} = +1.50$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C₈H₁₃NO₃ Methyl (R)-(+)-1-ethyl-5-oxo-3-pyrrolidinecarboxylate Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 95% (by chiral HRGC) $[\alpha]_{D}^{25} = +2.9$ (c 0.7, MeOH) MeO₂C $\Delta \epsilon_{213.4} = +1.83$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C₉H₁₅NO₃ Methyl (R)-(+)-1-(methylethyl)-5-oxo-3-pyrrolidinecarboxylate Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 96% (by chiral HRGC) $[\alpha]_{D}^{25} = -5.0$ (c 0.9, MeOH) MeO. $\Delta \varepsilon_{214} = -1.9$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: S C₁₀H₁₇NO₃ Methyl (S)-(-)-1-(1-butyl)-5-oxo-3-pyrrolidinecarboxylate Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 99% (by chiral HRGC) MeO₂C $[\alpha]_{D}^{25} = +8.4$ (c 0.75, MeOH) $\Delta \epsilon_{213} = +1.7$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C₈H₁₃NO₄ Methyl (R)-(+)-1-(2-hydroxyethyl)-5-oxo-3-pyrrolidinecarboxylate

Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 99% (by chiral HRGC) $[\alpha]_{D}^{25} = -19.0 \ (c \ 1.1, \ MeOH)$ MeO₂C $\Delta \epsilon_{197} = -2.7$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C13H15NO3 Methyl (R)-(-)-1-(2-methylphenyl)-5-oxo-3-pyrrolidinecarboxylate Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 34% (by chiral HRGC) $[\alpha]_{D}^{25} = +10.2$ (c 1.0, MeOH) HO₂C $\Delta \varepsilon_{209} = +0.12$ (c 1.0, MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C₅H₇NO₃ (R)-(+)-5-oxo-3-Pyrrolidinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 54% (by chiral HRGC) $[\alpha]_{D}^{25} = -3.5$ (c 1.0, MeOH) $\Delta \epsilon_{214} = -1.20$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: S C₇H₁₁NO₃ (S)-(-)-1-Ethyl-5-oxo-3-pyrrolidinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 88% (by chiral HRGC) $[\alpha]_{D}^{25} = -2.4$ (c 0.45, MeOH) HO, $\Delta \epsilon_{213.4} = -1.15$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: S C₈H₁₃NO₃ (S)-(-)-1-(Methylethyl)-5-oxo-3-pyrrolidinecarboxylic acid

Tetrahedron: Asymmetry 12 (2001) 3241

Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 75% (by chiral HRGC) $[\alpha]_{D}^{25} = +3.7$ (c 1.0, MeOH) HO₂C $\Delta \epsilon_{214} = +0.67$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: R C₉H₁₅NO₃ (R)-(+)-1-(1-Butyl)-5-oxo-3-pyrrolidinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 31% (by chiral HRGC) HO₋0 $[\alpha]_{D}^{25} = -4.4$ (c 1.0, MeOH) $\Delta \varepsilon_{214} = -0.7$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: S ÓН C7H11NO4 (S)-(-)-1-(2-Hydroxyethyl)-5-oxo-3-pyrrolidinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3241 Fulvia Felluga, Giuliana Pitacco, Massimo Prodan, Sabrina Pricl, Marco Visintin and Ennio Valentin* E.e. = 99% (by chiral HRGC) $[\alpha]_{D}^{25} = 15.5$ (*c* 0.5, abs. EtOH) HO. $\Delta \epsilon_{197} = +1.66$ (MeOH) Source of chirality: enzymatic resolution Absolute configuration: S C12H13NO3 (S)-(+)-1-(2-Methylphenyl)-5-oxo-3-pyrrolidinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3251 Arkadij Sobolev, Maurice C. R. Franssen,* Brigita Vigante, Brigita Cekavicus, Natalija Makarova, Gunars Duburs and Aede de Groot

 $HOOC \xrightarrow{H \to OCHF_2}_{H_3C} \xrightarrow{OCHF_2}_{H_4} \xrightarrow{OCHF_2}_{O \to O} \xrightarrow{O}_{H_4}$

C21H23F2NO7

E.e. >99% $[\alpha]_{D}^{20}$ +26.5 (*c* 1.0, CHCl₃) $[\alpha]_{D}^{20}$ -24.0 (*c* 1.0, MeOH) Source of chirality: enzymatic hydrolysis Absolute configuration: *R* (assigned by X-ray of derivative)

A587

Arkadij Sobolev, Maurice C. R. Franssen,* Brigita Vigante, Brigita Cekavicus, Natalija Makarova, Gunars Duburs and Aede de Groot

 $H_{3}COOC \rightarrow H_{2} OCHF_{2} O$

Tetrahedron: Asymmetry 12 (2001) 3251

E.e. >99% $[\alpha]_D^{20}$ -17.6 (c 1.0, CHCl₃) Source of chirality: chiral precursor Absolute configuration: *R* (assigned by X-ray of derivative)

(-)-3-[(Isobutyryloxy)methyl] 5-methyl (4R)-4-[2-(diffuoromethoxy)phenyl]-2, 6-dimethyl-1, 4-dihydro-3, 5-pyridinedicarboxylate (4R)-4-[2-(diffuoromethoxylate (4R)-4-[2-(diff

Arkadij Sobolev, Maurice C. R. Franssen,* Brigita Vigante, Brigita Cekavicus, Natalija Makarova, Gunars Duburs and Aede de Groot

OCHF₂ COOC₂H₄OC₃H₇-n

Tetrahedron: Asymmetry 12 (2001) 3251

E.e. >99% $[\alpha]_D^{20}$ -19.7 (c 1.0, CHCl₃) Source of chirality: chiral precursor Absolute configuration: *R* (assigned by X-ray of derivative of precursor)

 $C_{22}H_{27}F_2NO_6$

(-)-3-Methyl 5-(2-propoxyethyl) (4R)-4-[2-(difluoromethoxy)phenyl]-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate

Tetrahedron: Asymmetry 12 (2001) 3251 Arkadij Sobolev, Maurice C. R. Franssen,* Brigita Vigante, Brigita Cekavicus, Natalija Makarova, Gunars Duburs and Aede de Groot E.e. >99% $[\alpha]_{D}^{20}$ -51.7 (c 1.0, CHCl₃) Source of chirality: chiral precursor H₃COOC COOL Absolute configuration: S (assigned by X-ray of H₃C derivative) C17H17F2NO5 (-)-(4S)-4-[2-(Difluoromethoxy)phenyl]-5-(methoxycarbonyl)-2,6-dimethyl-1,4-dihydro-3-pyridinecarboxylic acid Tetrahedron: Asymmetry 12 (2001) 3257 A. J. Moreno-Vargas, J. G. Fernández-Bolaños, J. Fuentes and I. Robina* $[\alpha]_{D}^{25} = -31$ (c 1.0, CH₂Cl₂) Source of chirality: D-glucose COOFt Absolute configuration: 1S, 2R, 3R; assigned by analogy with diasteromerically pure precursor and NMR BnO BnŌ ÔBn C40H42O7 3-Ethoxycarbonyl-2-methyl-5-(1,2,3,4-tetra-O-benzyl-D-arabino-tetritol-1-yl)furan

A. J. Moreno-Vargas, J. G. Fernández-Bolaños, J. Fuentes and I. Robina*

Tetrahedron: Asymmetry 12 (2001) 3257

BnO CH₂OH BnO OBn Me

OBn

ŌBn C₅₄H₅₈O₆Si

BnO

BnŌ

Source of chirality: D-glucose Absolute configuration: 1*S*,2*R*,3*R*; assigned by analogy with diastereomerically pure precursor and NMR

 $[\alpha]_{\rm D}^{25} = -26$ (c 2.8, CH₂Cl₂)

C₃₈H₄₀O₆ 3-Hydroxymethyl-2-methyl-5-(1,2,3,4-tetra-*O*-benzyl-D-*arabino*-tetritol-1-yl)furan

Absolute configuration: 1*S*,2*R*,3*R*; assigned by analogy with diastereomerically pure precursor and NMR

 $\label{eq:constraint} 5-(1,2,3,4-Tetra-{\it O}-benzyl-D-{\it arabino}-tetritol-1-yl)-3-({\it tert}-butyl diphenyl silyloxymethyl)-2-methyl furantial and the second sec$

A. J. Moreno-Vargas, J. G. Fernández-Bolaños, J. Fuentes and I. Robina*

OTBDPS

HO

OBn

ŌBn

BnO

BnÕ

Tetrahedron: Asymmetry 12 (2001) 3257

 $[\alpha]_D^{25} = -26$ (c 2.5, CH₂Cl₂) Source of chirality: D-glucose Absolute configuration: 1*S*,2*R*,3*R*; assigned by analogy with diastereomerically pure precursor and NMR

C₅₄H₅₆O₇Si 5-(1,2,3,4-Tetra-*O*-benzyl-D-*arabino*-tetritol-1-yl)-3-(*tert*-butyldiphenylsilyloxymethyl)-2-formylfuran

C₇H₇NO₂ (*R*)-2-Hydroxy-2-(2-methyl-3-furanyl)acetonitrile

 $C_8H_{10}N_2O_2$ (*R*)-2-Hydroxy-2-(2-(*N*-methoxymethyl)pyrrolyl)acetonitrile

(S)-2-Hydroxy-2-(2-thiazolyl)acetonitrile

Peiran Chen, Shiqing Han, Guoqiang Lin,* Hao Huang and Zuyi Li Tetrahedron: Asymmetry 12 (2001) 3273 E.e. = 65% $[\alpha]_{D}^{21} = +22.4$ (*c* = 1.6, CHCl₃) Source of chirality: asymmetric synthesis catalyzed by (R)-HNL Absolute configuration: (R) C₇H₅BrN₂O (R)-2-Hydroxy-2-(6-bromo-2-pyridinyl)acetonitrile

(7aS)-Methyl-1,2,3,7a-tetrahydro-inden-5-one Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. $\geq 99\%$ $[\alpha]_{\rm D}$ +46 (c 4.16, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl AcC chloride Absolute configuration: 3aS,5R C15H20O5 2-Acetoxy-propionic acid (3aS)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5R)-yl ester Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. ≥99% Mp 68-69°C (heptane-ether) [α]_D -93 (*c* 1.98, CHCl₃) AcC 3a Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 3aR,5S C15H20O5 2-Acetoxy-propionic acid (3aR)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5S)-yl ester Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. ≥99% $[\alpha]_{\rm D}$ +39 (*c* 4.16, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl Act

C10H12O

7a

José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis*

C15H20O5

2-Acetoxy-propionic acid (3aS)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5S)-yl ester

A593

chloride

Absolute configuration: 3aS,5S

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. = 70% $[\alpha]_{D} - 54$ (c 1.42, CHCl₃) Source of chirality: (R)-(+)-1-phenylethylamine Absolute configuration: 7aS

 $[\alpha]_{D}$ -42 (c 2.11, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl AcC За chloride Absolute configuration: 3aR, 5RC15H20O5 2-Acetoxy-propionic acid (3aR)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5R)-yl ester Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. ≥99% $[\alpha]_{\rm D}$ +122 (c 2.15, CHCl₃) HO Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 6R,7aS C10H14O2 (6R)-Hydroxy-(7aS)-methyl-1,2,3,6,7,7a-hexahydro-inden-5-one Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. ≥99% $[\alpha]_{D}$ -121 (c 1.98, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 6S,7aR C10H14O2 (6S)-Hydroxy-(7aR)-methyl-1,2,3,6,7,7a-hexahydro-inden-5-one Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. \geq 99% Mp 71-73°C (heptane-ether) $[\alpha]_{\rm D}$ +25 (c 1.35, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 6S,7aS $C_{10}H_{14}O_2$

José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis*

(6S)-Hydroxy-(7aS)-methyl-1,2,3,6,7,7a-hexahydro-inden-5-one

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. ≥99%

José I. Martín Hernando and Siméon Arseniyadis*

 $C_{12}H_{16}O_3$

Acetic acid (3aS)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5S)-yl ester

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. \geq 99% Mp 71–73°C (heptane–ether) [α]_D –24 (*c* 1.33, CHCl₃) Source of chirality: resolution with (*S*)-*O*-acetyllactyl chloride Absolute configuration: 6R, 7a*R*

AcO, Source of chirality: resolution with (S)-O-acetyllactyl За chloride Absolute configuration: 3aR, 5RC12H16O3 Acetic acid (3aR)-methyl-6-oxo-2,3,3a,4,5,6-hexahydro-1H-inden-(5R)-yl ester Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. $\geq 99\%$ Mp 80-82°C (heptane-ether) HO $[\alpha]_{\rm D}$ +3 (c 1.14, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 3aS,5R,6R C10H16O2 (3aS)-Methyl-2,3,3a,4,5,6-hexahydro-1H-indene-(5R,6R)-diol Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. $\geq 99\%$ Mp 80-82°C (heptane-ether) HC $[\alpha]_{\rm D}$ -3 (c 1.08, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl HO chloride Absolute configuration: 3aR,5S,6S C10H16O2 (3aR)-Methyl-2,3,3a,4,5,6-hexahydro-1H-indene-(5S,6S)-diol Tetrahedron: Asymmetry 12 (2001) 3281 José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis* E.e. \geq 99% $[\alpha]_{\rm D}$ +159 (*c* 0.60, CHCl₃) HO Source of chirality: resolution with (S)-O-acetyllactyl chloride HO Absolute configuration: 3aS,5R,6S $C_{10}H_{16}O_2$

José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis*

(3aS)-Methyl-2,3,3a,4,5,6-hexahydro-1H-indene-(5R,6S)-diol

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. ≥99%

 $[\alpha]_{D} - 31$ (c 1.18, CHCl₃)

HO 5 3a

 $\label{eq:c10} C_{10}H_{16}O_2$ (3aR)-Methyl-2,3,3a,4,5,6-hexahydro-1H-indene-(5S,6R)-diol

José I. Candela Lena, Maria del R. Rico Ferreira, José I. Martín Hernando and Siméon Arseniyadis*

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. $\geq 99\%$ [α]_D -152 (*c* 0.85, CHCl₃) Source of chirality: resolution with (*S*)-*O*-acetyllactyl chloride Absolute configuration: 3aR, 5S, 6R

Tetrahedron: Asymmetry 12 (2001) 3281

E.e. $\geq 99\%$ Mp 77–79°C (heptane–ether) $[\alpha]_D$ –83 (c 1.08, CHCl₃) Source of chirality: resolution with (S)-O-acetyllactyl chloride Absolute configuration: 1R, 3R, 7S, 8S, 9S

 $\label{eq:C14} C_{14}H_{20}O_6$ Acetic acid (9S)-acetoxy-(7S)-methyl-2,10-dioxa-tricyclo[5.3.1.0] undec-(3R)-yl ester

E.e. $\geq 99\%$ [α]_D -22 (*c* 2.43, CHCl₃) Source of chirality: resolution with (*S*)-*O*-acetyllactyl chloride Absolute configuration: 2*R*,3*S*

 $\label{eq:C23} C_{23}H_{38}O_3Si$ 3-(2-Benzyloxy-ethyl)-(2R)-(tert-butyl-dimethyl-silanyloxymethyl)-(3S)-methyl-cyclohexanone

BnÓ

TBSÖ

Cl CONH,

C₉H₁₀ClNO (*R*)-(-)-2-(3'-Chlorophenyl)propionamide

E.e. >99% $[\alpha]_D^{18} = -48.3$ (*c* 1.25, CHCl₃) Source of chirality: *Rhodococcus* sp. CGMCC 0497catalyzed enantioselective hydrolysis of the corresponding nitrile Absolute configuration: *R*

(aR,1R,1'R,2S,2'S,5R,5'R)-[2,2',6,6'-Tetramethoxy-1,1'-biphenyl]-3,3'-diyl-S,S'-bis[5-methyl-2-(1-methylethyl)-cyclohexyl]-carbonic ester

C₁₅H₂₀NO₃Cl (S)-N-Benzyl-N-chloroacetylvaline methyl ester

1-[(3'R,6'S)-1'-Benzyl-5'-ethoxy-3',6'-dihydro-6'-isopropylpyrazin-3'-yl-2'-one]-3-[(3''S,6''S)-1''-benzyl-5''-ethoxy-3'',6''-dihydro-6''-isopropylpyrazin-3''-yl-2''-one]propane

Tetrahedron: Asymmetry 12 (2001) 3319

Tetrahedron: Asymmetry 12 (2001) 3319 Francesca Paradisi,* Gianni Porzi and Sergio Sandri* $[\alpha]_{\rm D}$ –26.1 (c 0.6, 1N HCl) ŅН₃СІ Н Source of chirality: L-valine NH₃Cl ноос Absolute configuration: 2R,6R assigned by ¹H NMR оон C20H38Cl2N4O6 Tripeptide [(HO)Val-(2R,6R)-2-allyl-2,6-DAP-Val(OH)]·2HCl Tetrahedron: Asymmetry 12 (2001) 3319 Francesca Paradisi,* Gianni Porzi and Sergio Sandri* $[\alpha]_{\rm D}$ –41 (c 1.16, 1N HCl) CO₂H NH3CI H NH₃Cl Source of chirality: L-valine HOOC соон Absolute configuration: 2R,6R assigned by ¹H NMR C19H36Cl2N4O8 Tripeptide [(HO)Val-(2R,6R)-2-carboxymethylen-2,6-DAP-Val(OH)]·2HCl Tetrahedron: Asymmetry 12 (2001) 3319 Francesca Paradisi,* Gianni Porzi and Sergio Sandri* $[\alpha]_{\rm D}$ –29.5 (c 0.51, 1N HCl) Source of chirality: L-valine H H₃C NH₃Cl NH₂Cl HOOC Absolute configuration: 2R,6R assigned by ¹H NMR соон $C_{18}H_{36}Cl_2N_4O_6$

Tripeptide [(HO)Val-(2R,6R)-2-methyl-2,6-DAP-Val(OH)]·2HCl